Speaker: Alison Fernandes (Department of Philosophy, University of Warwick)
Title: The Temporal Asymmetry of Chance
Abstract:
The Second Law of Thermodynamics can be derived from the fact that an isolated system at non-maximal entropy is overwhelmingly likely to increase in entropy over time. Such derivations seem to make ineliminable use of objective worldly probabilities (chances). But some have argued that if the fundamental laws are deterministic, there can be no non-trivial chances (Popper, Lewis, Schaffer). Statistical-mechanical probabilities are merely epistemic, or otherwise less real than ‘dynamical’ chances. Many have also thought that chance is intrinsically temporally asymmetric. It is part of the nature of chance that the past is ‘fixed’, and that all non-trivial chances must concern future events. I’ll argue that it is no coincidence that many have held both views: the rejection of deterministic chance is driven by an asymmetric picture of chance in which the past produces the future. I’ll articulate a more deflationary view, according to which more limited temporal asymmetries of chance reflect contingent asymmetries of precisely the kind reflected in the Second Law. The past can be chancy after all.